Chapter 7 | Blood and Circulatory System

  1. Figure 7.10 Which of the following statements about the circulatory system is false?
    1. Blood in the pulmonary vein is deoxygenated.
    2. Blood in the inferior vena cava is deoxygenated.
    3. Blood in the pulmonary artery is deoxygenated.
    4. Blood in the aorta is oxygenated.
      Illustration shows blood circulation through the mammalian systemic and pulmonary circuits. Blood enters the left atrium, the upper left chamber of the heart, through veins of the systemic circuit. The major vein that feeds the heart from the upper body is the superior vena cava, and the major vein that feeds the heart from the lower body is the inferior vena cava. From the left atrium blood travels down to the left ventricle, then up to the pulmonary artery. From the pulmonary artery blood enters capillaries of the lung. Blood is then collected by the pulmonary vein, and re-enters the heart through the upper left chamber of the heart, the left atrium. Blood travels down to the left ventricle, then re-enters the systemic circuit through the aorta, which exits through the top of the heart. Blood enters tissues of the body through capillaries of the systemic circuit.
      Figure 7.10 The mammalian circulatory system is divided into three circuits: the systemic circuit, the pulmonary circuit, and the coronary circuit. Blood is pumped from veins of the systemic circuit into the right atrium of the heart, then into the right ventricle. Blood then enters the pulmonary circuit, and is oxygenated by the lungs. From the pulmonary circuit, blood re-enters the heart through the left atrium. From the left ventricle, blood re-enters the systemic circuit through the aorta and is distributed to the rest of the body. The coronary circuit, which provides blood to the heart, is not shown.
  2. Figure 7.11 Which of the following statements about the heart is false?
      1. The mitral valve separates the left ventricle from the left atrium.
      2. Blood travels through the bicuspid valve to the left atrium.
      3. Both the aortic and the pulmonary valves are semilunar valves.
      4. The mitral valve is an atrioventricular valve.
        Illustration A shows the parts of the heart. Blood enters the right atrium through an upper, superior vena cava and a lower, inferior vena cava. From the right atrium, blood flows through the funnel-shaped tricuspid valve into the right ventricle. Blood then travels up and through the pulmonary valve into the pulmonary artery. Blood re-enters the heart through the pulmonary veins, and travels down from the left atrium, through the mitral valve, into the right ventricle. Blood then travels up through the aortic valve, into the aorta. The tricuspid and mitral valves are atrioventricular and funnel-shaped. The pulmonary and aortic valves are semilunar and slightly curved. An inset shows a cross section of the heart. The myocardium is the thick muscle layer. The inside of the heart is protected by the endocardium, and the outside is protected by the pericardium. Illustration B shows the outside of the heart. Coronary arteries and coronary veins run from the top down along the right and left sides.
        Figure 7.11 (a) The heart is primarily made of a thick muscle layer, called the myocardium, surrounded by membranes. One-way valves separate the four chambers. (b) Blood vessels of the coronary system, including the coronary arteries and veins, keep the heart musculature oxygenated.
  3. Figure 7.17 Varicose veins are veins that become enlarged because the valves no longer close properly, allowing blood to flow backward. Varicose veins are often most prominent on the legs. Why do you think this is the case?
    Illustration A shows an artery branching off into an arteriole, which branches into a capillary bed. The start of each capillary has a sphincter regulating flow through it. The capillaries converge into a venule, which joins a vein. Part B shows a valve in a blood vessel. The valve is slightly curved such that flow in one direction pushes it open, while flow in the other direction pushes it closed.
    Figure 7.17 (a) Precapillary sphincters are rings of smooth muscle that regulate the flow of blood through capillaries; they help control the location of blood flow to where it is needed. (b) Valves in the veins prevent blood from moving backward. (credit a: modification of work by NCI)

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Human Biology Copyright © by Janet Wang-Lee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book