Descriptive Statistics

# Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs

OpenStaxCollege

[latexpage]

One simple graph, the stem-and-leaf graph or stemplot, comes from the field of exploratory data analysis. It is a good choice when the data sets are small. To create the plot, divide each observation of data into a stem and a leaf. The leaf consists of a final significant digit. For example, 23 has stem two and leaf three. The number 432 has stem 43 and leaf two. Likewise, the number 5,432 has stem 543 and leaf two. The decimal 9.3 has stem nine and leaf three. Write the stems in a vertical line from smallest to largest. Draw a vertical line to the right of the stems. Then write the leaves in increasing order next to their corresponding stem.

For Susan Dean’s spring pre-calculus class, scores for the first exam were as follows (smallest to largest):

33; 42; 49; 49; 53; 55; 55; 61; 63; 67; 68; 68; 69; 69; 72; 73; 74; 78; 80; 83; 88; 88; 88; 90; 92; 94; 94; 94; 94; 96; 100

Stem-and-Leaf Graph
Stem Leaf
3 3
4 2 9 9
5 3 5 5
6 1 3 7 8 8 9 9
7 2 3 4 8
8 0 3 8 8 8
9 0 2 4 4 4 4 6
10 0

The stemplot shows that most scores fell in the 60s, 70s, 80s, and 90s. Eight out of the 31 scores or approximately 26% $$\left(\frac{8}{31}\right)$$ were in the 90s or 100, a fairly high number of As.

Try It

For the Park City basketball team, scores for the last 30 games were as follows (smallest to largest):

32; 32; 33; 34; 38; 40; 42; 42; 43; 44; 46; 47; 47; 48; 48; 48; 49; 50; 50; 51; 52; 52; 52; 53; 54; 56; 57; 57; 60; 61

Construct a stem plot for the data.

Stem Leaf
3 2 2 3 4 8
4 0 2 2 3 4 6 7 7 8 8 8 9
5 0 0 1 2 2 2 3 4 6 7 7
6 0 1

The stemplot is a quick way to graph data and gives an exact picture of the data. You want to look for an overall pattern and any outliers. An outlier is an observation of data that does not fit the rest of the data. It is sometimes called an extreme value. When you graph an outlier, it will appear not to fit the pattern of the graph. Some outliers are due to mistakes (for example, writing down 50 instead of 500) while others may indicate that something unusual is happening. It takes some background information to explain outliers, so we will cover them in more detail later.

The data are the distances (in kilometers) from a home to local supermarkets. Create a stemplot using the data:

1.1; 1.5; 2.3; 2.5; 2.7; 3.2; 3.3; 3.3; 3.5; 3.8; 4.0; 4.2; 4.5; 4.5; 4.7; 4.8; 5.5; 5.6; 6.5; 6.7; 12.3

Do the data seem to have any concentration of values?

The leaves are to the right of the decimal.

The value 12.3 may be an outlier. Values appear to concentrate at three and four kilometers.

Stem Leaf
1 1 5
2 3 5 7
3 2 3 3 5 8
4 0 2 5 5 7 8
5 5 6
6 5 7
7
8
9
10
11
12 3
Try It

The following data show the distances (in miles) from the homes of off-campus statistics students to the college. Create a stem plot using the data and identify any outliers:

0.5; 0.7; 1.1; 1.2; 1.2; 1.3; 1.3; 1.5; 1.5; 1.7; 1.7; 1.8; 1.9; 2.0; 2.2; 2.5; 2.6; 2.8; 2.8; 2.8; 3.5; 3.8; 4.4; 4.8; 4.9; 5.2; 5.5; 5.7; 5.8; 8.0

Stem Leaf
0 5 7
1 1 2 2 3 3 5 5 7 7 8 9
2 0 2 5 6 8 8 8
3 5 8
4 4 8 9
5 2 5 7 8
6
7
8 0

The value 8.0 may be an outlier. Values appear to concentrate at one and two miles.

A side-by-side stem-and-leaf plot allows a comparison of the two data sets in two columns. In a side-by-side stem-and-leaf plot, two sets of leaves share the same stem. The leaves are to the left and the right of the stems. [link] and [link] show the ages of presidents at their inauguration and at their death. Construct a side-by-side stem-and-leaf plot using this data.

Ages at Inauguration Ages at Death
9 9 8 7 7 7 6 3 2 4 6 9
8 7 7 7 7 6 6 6 5 5 5 5 4 4 4 4 4 2 1 1 1 1 1 0 5 3 6 6 7 7 8
9 5 4 4 2 1 1 1 0 6 0 0 3 3 4 4 5 6 7 7 7 8
7 0 0 1 1 1 4 7 8 8 9
8 0 1 3 5 8
9 0 0 3 3

Presidential Ages at Inauguration
President Age President Age President Age
Washington 57 Lincoln 52 Hoover 54
J. Adams 61 A. Johnson 56 F. Roosevelt 51
Jefferson 57 Grant 46 Truman 60
Madison 57 Hayes 54 Eisenhower 62
Monroe 58 Garfield 49 Kennedy 43
J. Q. Adams 57 Arthur 51 L. Johnson 55
Jackson 61 Cleveland 47 Nixon 56
Van Buren 54 B. Harrison 55 Ford 61
W. H. Harrison 68 Cleveland 55 Carter 52
Tyler 51 McKinley 54 Reagan 69
Polk 49 T. Roosevelt 42 G.H.W. Bush 64
Taylor 64 Taft 51 Clinton 47
Fillmore 50 Wilson 56 G. W. Bush 54
Pierce 48 Harding 55 Obama 47
Buchanan 65 Coolidge 51
Presidential Age at Death
President Age President Age President Age
Washington 67 Lincoln 56 Hoover 90
J. Adams 90 A. Johnson 66 F. Roosevelt 63
Jefferson 83 Grant 63 Truman 88
Madison 85 Hayes 70 Eisenhower 78
Monroe 73 Garfield 49 Kennedy 46
J. Q. Adams 80 Arthur 56 L. Johnson 64
Jackson 78 Cleveland 71 Nixon 81
Van Buren 79 B. Harrison 67 Ford 93
W. H. Harrison 68 Cleveland 71 Reagan 93
Tyler 71 McKinley 58
Polk 53 T. Roosevelt 60
Taylor 65 Taft 72
Fillmore 74 Wilson 67
Pierce 64 Harding 57
Buchanan 77 Coolidge 60

The table shows the number of wins and losses the Atlanta Hawks have had in 42 seasons. Create a side-by-side stem-and-leaf plot of these wins and losses.

Losses Wins Year Losses Wins Year
34 48 1968–1969 41 41 1989–1990
34 48 1969–1970 39 43 1990–1991
46 36 1970–1971 44 38 1991–1992
46 36 1971–1972 39 43 1992–1993
36 46 1972–1973 25 57 1993–1994
47 35 1973–1974 40 42 1994–1995
51 31 1974–1975 36 46 1995–1996
53 29 1975–1976 26 56 1996–1997
51 31 1976–1977 32 50 1997–1998
41 41 1977–1978 19 31 1998–1999
36 46 1978–1979 54 28 1999–2000
32 50 1979–1980 57 25 2000–2001
51 31 1980–1981 49 33 2001–2002
40 42 1981–1982 47 35 2002–2003
39 43 1982–1983 54 28 2003–2004
42 40 1983–1984 69 13 2004–2005
48 34 1984–1985 56 26 2005–2006
32 50 1985–1986 52 30 2006–2007
25 57 1986–1987 45 37 2007–2008
32 50 1987–1988 35 47 2008–2009
30 52 1988–1989 29 53 2009–2010
Atlanta Hawks Wins and Losses
Number of Wins Number of Losses
3 1 9
9 8 8 6 5 2 5 5 9
8 7 6 6 5 5 4 3 1 1 1 1 0 3 0 2 2 2 2 4 4 5 6 6 6 9 9 9
8 8 7 6 6 6 3 3 3 2 2 1 1 0 4 0 0 1 1 2 4 5 6 6 7 7 8 9
7 7 6 3 2 0 0 0 0 5 1 1 1 2 3 4 4 6 7
6 9

Another type of graph that is useful for specific data values is a line graph. In the particular line graph shown in [link], the x-axis (horizontal axis) consists of data values and the y-axis (vertical axis) consists of frequency points. The frequency points are connected using line segments.

In a survey, 40 mothers were asked how many times per week a teenager must be reminded to do his or her chores. The results are shown in [link] and in [link].

Number of times
teenager is reminded
Frequency
0 2
1 5
2 8
3 14
4 7
5 4
Try It

In a survey, 40 people were asked how many times per year they had their car in the shop for repairs. The results are shown in [link]. Construct a line graph.

Number of times in shop Frequency
0 7
1 10
2 14
3 9

Bar graphs consist of bars that are separated from each other. The bars can be rectangles or they can be rectangular boxes (used in three-dimensional plots), and they can be vertical or horizontal. The bar graph shown in [link] has age groups represented on the x-axis and proportions on the y-axis.

By the end of 2011, Facebook had over 146 million users in the United States. [link] shows three age groups, the number of users in each age group, and the proportion (%) of users in each age group. Construct a bar graph using this data.

13–25 65,082,280 45%
26–44 53,300,200 36%
45–64 27,885,100 19%
Try It

The population in Park City is made up of children, working-age adults, and retirees. [link] shows the three age groups, the number of people in the town from each age group, and the proportion (%) of people in each age group. Construct a bar graph showing the proportions.

Age groups Number of people Proportion of population
Children 67,059 19%
Retirees 131,662 38%

The columns in [link] contain: the race or ethnicity of students in U.S. Public Schools for the class of 2011, percentages for the Advanced Placement examine population for that class, and percentages for the overall student population. Create a bar graph with the student race or ethnicity (qualitative data) on the x-axis, and the Advanced Placement examinee population percentages on the y-axis.

Race/Ethnicity AP Examinee Population Overall Student Population
1 = Asian, Asian American or Pacific Islander 10.3% 5.7%
2 = Black or African American 9.0% 14.7%
3 = Hispanic or Latino 17.0% 17.6%
4 = American Indian or Alaska Native 0.6% 1.1%
5 = White 57.1% 59.2%
6 = Not reported/other 6.0% 1.7%
Try It

Park city is broken down into six voting districts. The table shows the percent of the total registered voter population that lives in each district as well as the percent total of the entire population that lives in each district. Construct a bar graph that shows the registered voter population by district.

District Registered voter population Overall city population
1 15.5% 19.4%
2 12.2% 15.6%
3 9.8% 9.0%
4 17.4% 18.5%
5 22.8% 20.7%
6 22.3% 16.8%

# References

Burbary, Ken. Facebook Demographics Revisited – 2001 Statistics, 2011. Available online at http://www.kenburbary.com/2011/03/facebook-demographics-revisited-2011-statistics-2/ (accessed August 21, 2013).

“9th Annual AP Report to the Nation.” CollegeBoard, 2013. Available online at http://apreport.collegeboard.org/goals-and-findings/promoting-equity (accessed September 13, 2013).

“Overweight and Obesity: Adult Obesity Facts.” Centers for Disease Control and Prevention. Available online at http://www.cdc.gov/obesity/data/adult.html (accessed September 13, 2013).

# Chapter Review

A stem-and-leaf plot is a way to plot data and look at the distribution. In a stem-and-leaf plot, all data values within a class are visible. The advantage in a stem-and-leaf plot is that all values are listed, unlike a histogram, which gives classes of data values. A line graph is often used to represent a set of data values in which a quantity varies with time. These graphs are useful for finding trends. That is, finding a general pattern in data sets including temperature, sales, employment, company profit or cost over a period of time. A bar graph is a chart that uses either horizontal or vertical bars to show comparisons among categories. One axis of the chart shows the specific categories being compared, and the other axis represents a discrete value. Some bar graphs present bars clustered in groups of more than one (grouped bar graphs), and others show the bars divided into subparts to show cumulative effect (stacked bar graphs). Bar graphs are especially useful when categorical data is being used.

# For each of the following data sets, create a stem plot and identify any outliers.The miles per gallon rating for 30 cars are shown below (lowest to highest).

19, 19, 19, 20, 21, 21, 25, 25, 25, 26, 26, 28, 29, 31, 31, 32, 32, 33, 34, 35, 36, 37, 37, 38, 38, 38, 38, 41, 43, 43

Stem Leaf
1 9 9 9
2 0 1 1 5 5 5 6 6 8 9
3 1 1 2 2 3 4 5 6 7 7 8 8 8 8
4 1 3 3

The height in feet of 25 trees is shown below (lowest to highest).

25, 27, 33, 34, 34, 34, 35, 37, 37, 38, 39, 39, 39, 40, 41, 45, 46, 47, 49, 50, 50, 53, 53, 54, 54

The data are the prices of different laptops at an electronics store. Round each value to the nearest ten.

249, 249, 260, 265, 265, 280, 299, 299, 309, 319, 325, 326, 350, 350, 350, 365, 369, 389, 409, 459, 489, 559, 569, 570, 610

Stem Leaf
2 5 5 6 7 7 8
3 0 0 1 2 3 3 5 5 5 7 7 9
4 1 6 9
5 6 7 7
6 1

The data are daily high temperatures in a town for one month.

61, 61, 62, 64, 66, 67, 67, 67, 68, 69, 70, 70, 70, 71, 71, 72, 74, 74, 74, 75, 75, 75, 76, 76, 77, 78, 78, 79, 79, 95

For the next three exercises, use the data to construct a line graph.

In a survey, 40 people were asked how many times they visited a store before making a major purchase. The results are shown in [link].

Number of times in store Frequency
1 4
2 10
3 16
4 6
5 4

In a survey, several people were asked how many years it has been since they purchased a mattress. The results are shown in [link].

Years since last purchase Frequency
0 2
1 8
2 13
3 22
4 16
5 9

Several children were asked how many TV shows they watch each day. The results of the survey are shown in [link].

Number of TV Shows Frequency
0 12
1 18
2 36
3 7
4 2

The students in Ms. Ramirez’s math class have birthdays in each of the four seasons. [link] shows the four seasons, the number of students who have birthdays in each season, and the percentage (%) of students in each group. Construct a bar graph showing the number of students.

Seasons Number of students Proportion of population
Spring 8 24%
Summer 9 26%
Autumn 11 32%
Winter 6 18%

Using the data from Mrs. Ramirez’s math class supplied in [link], construct a bar graph showing the percentages.

David County has six high schools. Each school sent students to participate in a county-wide science competition. [link] shows the percentage breakdown of competitors from each school, and the percentage of the entire student population of the county that goes to each school. Construct a bar graph that shows the population percentage of competitors from each school.

High School Science competition population Overall student population
Alabaster 28.9% 8.6%
Concordia 7.6% 23.2%
Genoa 12.1% 15.0%
Mocksville 18.5% 14.3%
Tynneson 24.2% 10.1%
West End 8.7% 28.8%

Use the data from the David County science competition supplied in [link]. Construct a bar graph that shows the county-wide population percentage of students at each school.

# Homework

Student grades on a chemistry exam were: 77, 78, 76, 81, 86, 51, 79, 82, 84, 99

1. Construct a stem-and-leaf plot of the data.
2. Are there any potential outliers? If so, which scores are they? Why do you consider them outliers?

[link] contains the 2010 obesity rates in U.S. states and Washington, DC.

State Percent (%) State Percent (%) State Percent (%)
Alabama 32.2 Kentucky 31.3 North Dakota 27.2
Alaska 24.5 Louisiana 31.0 Ohio 29.2
Arizona 24.3 Maine 26.8 Oklahoma 30.4
Arkansas 30.1 Maryland 27.1 Oregon 26.8
California 24.0 Massachusetts 23.0 Pennsylvania 28.6
Colorado 21.0 Michigan 30.9 Rhode Island 25.5
Connecticut 22.5 Minnesota 24.8 South Carolina 31.5
Delaware 28.0 Mississippi 34.0 South Dakota 27.3
Washington, DC 22.2 Missouri 30.5 Tennessee 30.8
Florida 26.6 Montana 23.0 Texas 31.0
Georgia 29.6 Nebraska 26.9 Utah 22.5
Hawaii 22.7 Nevada 22.4 Vermont 23.2
Idaho 26.5 New Hampshire 25.0 Virginia 26.0
Illinois 28.2 New Jersey 23.8 Washington 25.5
Indiana 29.6 New Mexico 25.1 West Virginia 32.5
Iowa 28.4 New York 23.9 Wisconsin 26.3
Kansas 29.4 North Carolina 27.8 Wyoming 25.1
1. Use a random number generator to randomly pick eight states. Construct a bar graph of the obesity rates of those eight states.
2. Construct a bar graph for all the states beginning with the letter “A.”
3. Construct a bar graph for all the states beginning with the letter “M.”
1. Example solution for using the random number generator for the TI-84+ to generate a simple random sample of 8 states. Instructions are as follows.
• Number the entries in the table 1–51 (Includes Washington, DC; Numbered vertically)
• Press MATH
• Arrow over to PRB
• Press 5:randInt(
• Enter 51,1,8)

Eight numbers are generated (use the right arrow key to scroll through the numbers). The numbers correspond to the numbered states (for this example: {47 21 9 23 51 13 25 4}. If any numbers are repeated, generate a different number by using 5:randInt(51,1)). Here, the states (and Washington DC) are {Arkansas, Washington DC, Idaho, Maryland, Michigan, Mississippi, Virginia, Wyoming}.

Corresponding percents are {30.1, 22.2, 26.5, 27.1, 30.9, 34.0, 26.0, 25.1}.